Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44.323
Filtrar
1.
Skin Res Technol ; 30(4): e13666, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38606717

RESUMEN

BACKGROUND: It is known that heparinoid, a mucopolysaccharide polysulfate, is effective in improving rough skin and promoting blood circulation as medicines for diseased areas. However, heparinoid has a molecular weight of more than 5000 and cannot penetrate healthy stratum corneum. OBJECTIVE: We tested the efficacy of sulfated oligosaccharides with a molecular weight of less than 2000 on the human skin barrier function and moisturizing function. METHODS: We measured the transepidermal water loss (TEWL) of a three-dimensional human epidermis model cultured for 3 days after topical application of sulfated oligosaccharides, then observed the effects on TEWL suppression. The mRNA levels of proteins involved in intercellular lipid transport and storage in the stratum corneum, and moisture retention were measured using RT-qPCR. RESULTS: An increase in the mRNA levels of the ATP-binding cassette subfamily A member 12 (ABCA12), which transports lipids into stratum granulosum, was confirmed. Increases were also observed in the mRNA levels of filaggrin (FLG), which is involved in the generation of natural moisturizing factors, and of caspase-14, calpain-1 and bleomycin hydrolase, which are involved in the degradation of FLG. Antibody staining confirmed that the application of sodium trehalose sulfate to 3D model skin resulted in more ABCA12, ceramide, transglutaminase1, and FLG than those in controls. In a randomized, placebo-controlled, double-blind study, participants with low stratum corneum water content applied a lotion and emulsion containing sodium trehalose sulfate to their faces for 4 weeks. Sodium trehalose sulfate decreased the TEWL and increased the stratum corneum water content. CONCLUSION: These results suggest that cosmetics containing sodium trehalose sulfate act on the epidermis by increasing barrier factors and moisturizing factors, thereby ameliorating dry skin.


Asunto(s)
Heparinoides , Trehalosa , Humanos , Trehalosa/farmacología , Trehalosa/metabolismo , Heparinoides/metabolismo , Heparinoides/farmacología , Piel/metabolismo , Epidermis/metabolismo , Cuidados de la Piel , Agua/metabolismo , ARN Mensajero/metabolismo , Sodio/metabolismo , Sodio/farmacología
2.
An Acad Bras Cienc ; 96(1): e20230971, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38597493

RESUMEN

Paraquat (1,1'-dimethyl-4,4'-bipyridyl dichloride) is an herbicide widely used worldwide and officially banned in Brazil in 2020. Kidney lesions frequently occur, leading to acute kidney injury (AKI) due to exacerbated reactive O2 species (ROS) production. However, the consequences of ROS exposure on ionic transport and the regulator local renin-angiotensin-aldosterone system (RAAS) still need to be elucidated at a molecular level. This study evaluated how ROS acutely influences Na+-transporting ATPases and the renal RAAS. Adult male Wistar rats received paraquat (20 mg/kg; ip). After 24 h, we observed body weight loss and elevation of urinary flow and serum creatinine. In the renal cortex, paraquat increased ROS levels, NADPH oxidase and (Na++K+)ATPase activities, angiotensin II-type 1 receptors, tumor necrosis factor-α (TNF-α), and interleukin-6. In the medulla, paraquat increased ROS levels and NADPH oxidase activity but inhibited (Na++K+)ATPase. Paraquat induced opposite effects on the ouabain-resistant Na+-ATPase in the cortex (decrease) and medulla (increase). These alterations, except for increased serum creatinine and renal levels of TNF-α and interleukin-6, were prevented by 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (tempol; 1 mmol/L in drinking water), a stable antioxidant. In summary, after paraquat poisoning, ROS production culminated with impaired medullary function, urinary fluid loss, and disruption of Na+-transporting ATPases and angiotensin II signaling.


Asunto(s)
Paraquat , Sistema Renina-Angiotensina , Ratas , Animales , Masculino , Especies Reactivas de Oxígeno/metabolismo , Paraquat/metabolismo , Paraquat/farmacología , Angiotensina II/metabolismo , Angiotensina II/farmacología , Creatinina/metabolismo , Creatinina/orina , Interleucina-6 , Factor de Necrosis Tumoral alfa/metabolismo , Ratas Wistar , Riñón , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/farmacología , Sodio/metabolismo , Sodio/farmacología , NADPH Oxidasas/metabolismo , NADPH Oxidasas/farmacología
3.
Nat Commun ; 15(1): 3119, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600129

RESUMEN

Light-driven sodium pumps (NaRs) are unique ion-transporting microbial rhodopsins. The major group of NaRs is characterized by an NDQ motif and has two aspartic acid residues in the central region essential for sodium transport. Here we identify a subgroup of the NDQ rhodopsins bearing an additional glutamic acid residue in the close vicinity to the retinal Schiff base. We thoroughly characterize a member of this subgroup, namely the protein ErNaR from Erythrobacter sp. HL-111 and show that the additional glutamic acid results in almost complete loss of pH sensitivity for sodium-pumping activity, which is in contrast to previously studied NaRs. ErNaR is capable of transporting sodium efficiently even at acidic pH levels. X-ray crystallography and single particle cryo-electron microscopy reveal that the additional glutamic acid residue mediates the connection between the other two Schiff base counterions and strongly interacts with the aspartic acid of the characteristic NDQ motif. Hence, it reduces its pKa. Our findings shed light on a subgroup of NaRs and might serve as a basis for their rational optimization for optogenetics.


Asunto(s)
Bases de Schiff , ATPasa Intercambiadora de Sodio-Potasio , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Bases de Schiff/química , Ácido Aspártico , Microscopía por Crioelectrón , Ácido Glutámico , Rodopsinas Microbianas/metabolismo , Sodio/metabolismo , Rodopsina/química
4.
Clin Exp Pharmacol Physiol ; 51(6): e13855, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636942

RESUMEN

Cardiac microvascular endothelial cells (CMECs) are important cells surrounding the cardiomyocytes in the heart that maintain microenvironment homeostasis. Salvianic acid A sodium (SAAS) has been reported to prevent myocardial infarction (MI) injury. However, the role of SAAS on CMEC proliferation remains unclear. CEMCs exposed to oxygen glucose deprivation (OGD) were used to explore the angiogenic abilities of SAAS. In vivo, C57BL/6 mice were divided into three groups: sham, MI and SAAS + MI groups. Compared to OGD group, SAAS led to a reduction in the apoptotic rate and an increase of the proliferation in vitro. Additionally, SAAS increased the protein levels of Bcl2, HIF-1α and vascular endothelial growth factor (VEGF) with the reduction of Bax. In terms of the specific mechanisms, SAAS might inhibit HIF-1α ubiquitination and enhance the HIF-1α/VEGF signalling pathway to increase CMEC proliferation. Furthermore, SAAS increased the density of vessels, inhibited myocardial fibrosis and improved cardiac dysfunction in vivo. The present study has revealed that SAAS could potentially be used as an active substance to facilitate CMEC proliferation post-MI.


Asunto(s)
Lactatos , Infarto del Miocardio , Factor A de Crecimiento Endotelial Vascular , Ratones , Animales , Células Endoteliales/metabolismo , Sodio/metabolismo , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proliferación Celular , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
5.
ACS Chem Neurosci ; 15(6): 1276-1285, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38454572

RESUMEN

Glutamate, the major excitatory neurotransmitter in the vertebrate brain, exerts its functions through the activation of specific plasma membrane receptors and transporters. Overstimulation of glutamate receptors results in neuronal cell death through a process known as excitotoxicity. A family of sodium-dependent glutamate plasma membrane transporters is responsible for the removal of glutamate from the synaptic cleft, preventing an excitotoxic insult. Glial glutamate transporters carry out more than 90% of the brain glutamate uptake activity and are responsible for glutamate recycling through the GABA/Glutamate/Glutamine shuttle. The aryl hydrocarbon receptor is a ligand-dependent transcription factor that integrates environmental clues through its ability to heterodimerize with different transcription factors. Taking into consideration the fundamental role of glial glutamate transporters in glutamatergic synapses and that these transporters are regulated at the transcriptional, translational, and localization levels in an activity-dependent fashion, in this contribution, we explored the involvement of the aryl hydrocarbon receptor, as a model of environmental integrator, in the regulation of the glial sodium-dependent glutamate/aspartate transporter. Using the model of chick cerebellar Bergmann glia cells, we report herein that the aryl hydrocarbon receptors exert a time-dependent decrease in the transporter mRNA levels and a diminution of its uptake activity. The nuclear factor kappa light chain enhancer of the activated B cell signaling pathway is involved in this regulation. Our results favor the notion of an environmentally dependent regulation of glutamate removal in glial cells and therefore strengthen the notion of the involvement of glial cells in xenobiotic neurotoxic effects.


Asunto(s)
Ácido Aspártico , Receptores de Hidrocarburo de Aril , Ácido Aspártico/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Sodio/metabolismo , Neuroglía/metabolismo , Ácido Glutámico/metabolismo , Células Cultivadas
6.
Pflugers Arch ; 476(4): 505-516, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448727

RESUMEN

The sodium/proton exchanger isoform 3 (NHE3) is expressed in the intestine and the kidney, where it contributes to hydrogen secretion and sodium (re)absorption. The roles of this transporter have been studied by the use of the respective knockout mice and by using pharmacological inhibitors. Whole-body NHE3 knockout mice suffer from a high mortality rate (with only ∼30% of mice surviving into adulthood), and based on the expression of NHE3 in both intestine and kidney, some conclusions that were originally derived were based on this rather complex phenotype. In the last decade, more refined models have been developed that added temporal and spatial control of NHE3 expression. For example, novel mouse models have been developed with a knockout of NHE3 in intestinal epithelial cells, tubule/collecting duct of the kidney, proximal tubule of the kidney, and thick ascending limb of the kidney. These refined models have significantly contributed to our understanding of the role of NHE3 in a tissue/cell type-specific manner. In addition, tenapanor was developed, which is a non-absorbable, intestine-specific NHE3 inhibitor. In rat and human studies, tenapanor lowered intestinal Pi uptake and was effective in lowering plasma Pi levels in patients on hemodialysis. Of note, diarrhea is seen as a side effect of tenapanor (with its indication for the treatment of constipation) and in intestine-specific NHE3 knockout mice; however, effects on plasma Pi were not supported by this mouse model which showed enhanced and not reduced intestinal Pi uptake. Further studies indicated that the gut microbiome in mice lacking intestinal NHE3 resembles an intestinal environment favoring the competitive advantage of inflammophilic over anti-inflammatory species, something similar seen in patients with inflammatory bowel disease. This review will highlight recent developments and summarize newly gained insight from these refined models.


Asunto(s)
Isoquinolinas , Intercambiadores de Sodio-Hidrógeno , Sodio , Sulfonamidas , Animales , Humanos , Ratones , Ratas , Ratones Noqueados , Sodio/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo
7.
JCI Insight ; 9(6)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38516890

RESUMEN

Sodium-glucose cotransporter 2 (SGLT2) inhibitor, dapagliflozin (Dapa), exhibited nephroprotective effects in patients with chronic kidney disease (CKD). We assessed the efficacy of short-term Dapa administration following acute kidney injury (AKI) in preventing CKD. Male Wistar rats were randomly assigned to Sham surgery, bilateral ischemia for 30 minutes (abbreviated as IR), and IR + Dapa groups. Daily treatment with Dapa was initiated just 24 hours after IR and maintained for only 10 days. Initially, rats were euthanized at this point to study early renal repair. After severe AKI, Dapa promptly restored creatinine clearance (CrCl) and significantly reduced renal vascular resistance compared with the IR group. Furthermore, Dapa effectively reversed the mitochondrial abnormalities, including increased fission, altered mitophagy, metabolic dysfunction, and proapoptotic signaling. To study this earlier, another set of rats was studied just 5 days after AKI. Despite persistent renal dysfunction, our data reveal a degree of mitochondrial protection. Remarkably, a 10-day treatment with Dapa demonstrated effectiveness in preventing CKD transition in an independent cohort monitored for 5 months after AKI. This was evidenced by improvements in proteinuria, CrCl, glomerulosclerosis, and fibrosis. Our findings underscore the potential of Dapa in preventing maladaptive repair following AKI, emphasizing the crucial role of early intervention in mitigating AKI long-term consequences.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Daño por Reperfusión , Animales , Humanos , Masculino , Ratas , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/metabolismo , Glucosa , Ratas Wistar , Insuficiencia Renal Crónica/tratamiento farmacológico , Daño por Reperfusión/complicaciones , Daño por Reperfusión/metabolismo , Sodio/metabolismo , Transportador 2 de Sodio-Glucosa/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Compuestos de Bencidrilo/farmacología , Compuestos de Bencidrilo/uso terapéutico
8.
Curr Opin Rheumatol ; 36(3): 163-168, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38517337

RESUMEN

PURPOSE OF REVIEW: Lupus nephritis is a common complication of systemic lupus erythematosus and is associated with significant morbidity and mortality. The utility of sodium-glucose cotransporter 2 (SGLT2) inhibitors in the management of lupus nephritis is currently uncertain. Here, we summarize the rationale for their use among patient with lupus nephritis. RECENT FINDINGS: SGLT2 inhibitors were initially developed as antihyperglycemic agents. They have since been shown to have additional, profound effects to slow the progression of chronic kidney disease and lessen the long-term risks of cardiovascular disease in large clinic trials of patients with chronic kidney disease, with and without diabetes, as well as in patients with and without proteinuria. Patients with recent exposure to immunosuppression were excluded from these trials due to concern for risk of infection. In the few, small trials of patients with lupus nephritis, SGLT2 inhibitors were found to be well tolerated. They have been shown to reduce proteinuria and to have modest beneficial effects on blood pressure and BMI among patients with lupus nephritis. They have not been shown to influence disease activity. SUMMARY: SGLT2 inhibitors may have a role in mitigating the chronic renal and cardiovascular effects of lupus nephritis. They should be introduced after kidney function has been stabilized with appropriate immunosuppression, in conjunction with angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. They currently have no role in active disease.


Asunto(s)
Nefritis Lúpica , Insuficiencia Renal Crónica , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Glucosa/metabolismo , Nefritis Lúpica/tratamiento farmacológico , Nefritis Lúpica/complicaciones , Proteinuria/tratamiento farmacológico , Proteinuria/etiología , Insuficiencia Renal Crónica/complicaciones , Sodio/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
9.
Sci Adv ; 10(13): eadl3685, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552027

RESUMEN

The solute carrier 13 (SLC13) family comprises electrogenic sodium ion-coupled anion cotransporters, segregating into sodium ion-sulfate cotransporters (NaSs) and sodium ion-di- and-tricarboxylate cotransporters (NaDCs). NaS1 and NaDC1 regulate sulfate homeostasis and oxidative metabolism, respectively. NaS1 deficiency affects murine growth and fertility, while NaDC1 affects urinary citrate and calcium nephrolithiasis. Despite their importance, the mechanisms of substrate recognition and transport remain insufficiently characterized. In this study, we determined the cryo-electron microscopy structures of human NaS1, capturing inward-facing and combined inward-facing/outward-facing conformations within a dimer both in apo and sulfate-bound states. In addition, we elucidated NaDC1's outward-facing conformation, encompassing apo, citrate-bound, and N-(p-amylcinnamoyl) anthranilic acid (ACA) inhibitor-bound states. Structural scrutiny illuminates a detailed elevator mechanism driving conformational changes. Notably, the ACA inhibitor unexpectedly binds primarily anchored by transmembrane 2 (TM2), Loop 10, TM11, and TM6a proximate to the cytosolic membrane. Our findings provide crucial insights into SLC13 transport mechanisms, paving the way for future drug design.


Asunto(s)
Simportadores , Animales , Humanos , Ratones , Regulación Alostérica , Citratos/metabolismo , Microscopía por Crioelectrón , Sodio/metabolismo , Sulfatos/metabolismo , Simportadores/metabolismo
10.
Pflugers Arch ; 476(4): 479-503, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38536494

RESUMEN

Cellular and organism survival depends upon the regulation of pH, which is regulated by highly specialized cell membrane transporters, the solute carriers (SLC) (For a comprehensive list of the solute carrier family members, see: https://www.bioparadigms.org/slc/ ). The SLC4 family of bicarbonate (HCO3-) transporters consists of ten members, sorted by their coupling to either sodium (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE), chloride (AE1, AE2, AE3), or borate (BTR1). The ionic coupling of SLC4A9 (AE4) remains controversial. These SLC4 bicarbonate transporters may be controlled by cellular ionic gradients, cellular membrane voltage, and signaling molecules to maintain critical cellular and systemic pH (acid-base) balance. There are profound consequences when blood pH deviates even a small amount outside the normal range (7.35-7.45). Chiefly, Na+-coupled bicarbonate transporters (NCBT) control intracellular pH in nearly every living cell, maintaining the biological pH required for life. Additionally, NCBTs have important roles to regulate cell volume and maintain salt balance as well as absorption and secretion of acid-base equivalents. Due to their varied tissue expression, NCBTs have roles in pathophysiology, which become apparent in physiologic responses when their expression is reduced or genetically deleted. Variations in physiological pH are seen in a wide variety of conditions, from canonically acid-base related conditions to pathologies not necessarily associated with acid-base dysfunction such as cancer, glaucoma, or various neurological diseases. The membranous location of the SLC4 transporters as well as recent advances in discovering their structural biology makes them accessible and attractive as a druggable target in a disease context. The role of sodium-coupled bicarbonate transporters in such a large array of conditions illustrates the potential of treating a wide range of disease states by modifying function of these transporters, whether that be through inhibition or enhancement.


Asunto(s)
Bicarbonatos , Simportadores de Sodio-Bicarbonato , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/metabolismo , Bicarbonatos/metabolismo , Bicarbonato de Sodio , Sodio/metabolismo , Proteínas de Transporte de Membrana , Concentración de Iones de Hidrógeno
11.
Physiol Rep ; 12(5): e15970, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38479999

RESUMEN

The brain possesses intricate mechanisms for monitoring sodium (Na) levels in body fluids. During prolonged dehydration, the brain detects variations in body fluids and produces sensations of thirst and aversions to salty tastes. At the core of these processes Nax , the brain's Na sensor, exists. Specialized neural nuclei, namely the subfornical organ (SFO) and organum vasculosum of the lamina terminalis (OVLT), which lack the blood-brain barrier, play pivotal roles. Within the glia enveloping the neurons in these regions, Nax collaborates with Na+ /K+ -ATPase and glycolytic enzymes to drive glycolysis in response to elevated Na levels. Lactate released from these glia cells activates nearby inhibitory neurons. The SFO hosts distinct types of angiotensin II-sensitive neurons encoding thirst and salt appetite, respectively. During dehydration, Nax -activated inhibitory neurons suppress salt-appetite neuron's activity, whereas salt deficiency reduces thirst neuron's activity through cholecystokinin. Prolonged dehydration increases the Na sensitivity of Nax via increased endothelin expression in the SFO. So far, patients with essential hypernatremia have been reported to lose thirst and antidiuretic hormone release due to Nax -targeting autoantibodies. Inflammation in the SFO underlies the symptoms. Furthermore, Nax activation in the OVLT, driven by Na retention, stimulates the sympathetic nervous system via acid-sensing ion channels, contributing to a blood pressure elevation.


Asunto(s)
Sodio , Sed , Humanos , Sodio/metabolismo , Sed/fisiología , Presión Sanguínea , Apetito/fisiología , Deshidratación , Cloruro de Sodio/metabolismo , Encéfalo/metabolismo , Cloruro de Sodio Dietético/metabolismo
12.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474244

RESUMEN

Adrenaline has recently been found to trigger phosphatidylserine (PS) exposure on blood platelets, resulting in amplification of the coagulation process, but the mechanism is only fragmentarily established. Using a panel of platelet receptors' antagonists and modulators of signaling pathways, we evaluated the importance of these in adrenaline-evoked PS exposure by flow cytometry. Calcium and sodium ion influx into platelet cytosol, after adrenaline treatment, was examined by fluorimetric measurements. We found a strong reduction in PS exposure after blocking of sodium and calcium ion influx via Na+/H+ exchanger (NHE) and Na+/Ca2+ exchanger (NCX), respectively. ADP receptor antagonists produced a moderate inhibitory effect. Substantial limitation of PS exposure was observed in the presence of GPIIb/IIIa antagonist, phosphoinositide-3 kinase (PI3-K) inhibitors, or prostaglandin E1, a cyclic adenosine monophosphate (cAMP)-elevating agent. We demonstrated that adrenaline may develop a procoagulant response in human platelets with the substantial role of ion exchangers (NHE and NCX), secreted ADP, GPIIb/IIIa-dependent outside-in signaling, and PI3-K. Inhibition of the above mechanisms and increasing cytosolic cAMP seem to be the most efficient procedures to control adrenaline-evoked PS exposure in human platelets.


Asunto(s)
Plaquetas , Activación Plaquetaria , Humanos , Plaquetas/metabolismo , Calcio/metabolismo , Epinefrina/metabolismo , Inhibidores de Agregación Plaquetaria/farmacología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Sodio/metabolismo , Trombina/metabolismo
13.
Cells ; 13(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38534340

RESUMEN

Osteoarthritis (OA) is a multifactorial disease depending on molecular, genetic, and environmental factors like mechanical strain. Next to the cartilage and the subchondral bone, OA also affects the synovium, which is critically involved in the maintenance of joint homeostasis. As there is a correlation between the extracellular sodium content in the knee joint and OA, this study investigates the impact of sodium on OA-associated processes like inflammation and bone remodeling without and with mechanical loading in synovial fibroblasts. For that purpose, murine synovial fibroblasts from the knee joint were exposed to three different extracellular sodium chloride concentrations (-20 mM, ±0 mM and +50 mM NaCl) in the absence or presence of compressive or intermittent tensile strain. In addition to the intracellular Na+ content and gene expression of the osmoprotective transcription factor nuclear factor of activated T cells 5 (Nfat5), the gene and protein expression of inflammatory mediators (interleukin-6 (IL6), prostaglandin endoperoxide synthase-2 (Ptgs2)/prostaglandin E2 (PGE2)), and factors involved in bone metabolism (receptor activator of NF-κB ligand (RANKL), osteoprotegerin (OPG)) were analyzed by qPCR and ELISA. Mechanical strain already increased intracellular Na+ and Nfat5 gene expression at standard salt conditions to levels obtained by exposure to increased extracellular Na+ content. Both high salt and compressive strain resulted in elevated IL6 and PGE2 release. Intermittent tensile strain did not increase Il6 mRNA expression or IL6 protein secretion but triggered Ptgs2 expression and PGE2 production. Increased extracellular Na+ levels and compressive strain increased RANKL expression. In contrast, intermittent tension suppressed RANKL expression without this response being subject to modification by extracellular sodium availability. OPG expression was only induced by compressive strain. Changes in extracellular Na+ levels modified the inflammatory response and altered the expression of mediators involved in bone metabolism in cells exposed to mechanical strain. These findings indicate that Na+ balance and Nfat5 are important players in synovial fibroblast responses to mechanical stress. The integration of Na+ and Na+-dependent signaling will help to improve the understanding of the pathogenesis of osteoarthritis and could lead to the establishment of new therapeutic targets.


Asunto(s)
Interleucina-6 , Osteoartritis , Animales , Ratones , Ciclooxigenasa 2/metabolismo , Interleucina-6/metabolismo , Sodio/metabolismo , Estrés Mecánico , Osteoartritis/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Fibroblastos/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-38438092

RESUMEN

The excretory mechanisms of stenohaline marine osmoconforming crabs are often compared to those of the more extensively characterized euryhaline osmoregulating crabs. These comparisons may have limitations, given that unlike euryhaline brachyurans the gills of stenohaline marine osmoconformers possess ion-leaky paracellular pathways and lack the capacity to undergo ultrastructural changes that can promote ion-transport processes in dilute media. Furthermore, the antennal glands of stenohaline marine osmoconformers are poorly characterized making it difficult to determine what role urinary processes play in excretion. In the presented study, ammonia excretory processes as well as related acid-base equivalent transport rates and mechanisms were investigated in the Dungeness crab, Metacarcinus magister - an economically valuable stenohaline marine osmoconforming crab. Isolated and perfused gills were found to predominantly eliminate ammonia through a microtubule network-dependent active NH4+ transport mechanism that is likely performed by cells lining the arterial pockets of the gill lamella where critical Na+/K+-ATPase detection was observed. The V-type H+-ATPase - a vital component to transbranchial ammonia excretion mechanisms of euryhaline crabs - was not found to contribute significantly to ammonia excretion; however, this may be due to the transporter's unexpected apical localization. Although unconnected to ammonia excretion rates, a membrane-bound isoform of carbonic anhydrase was localized to the apical and basolateral membranes of lamella suited for respiration. Urine was found to contain significantly less ammonia as well as carbonate species than the hemolymph, indicating that unlike those of some euryhaline crabs the antennal glands of the Dungeness crab reabsorb these molecules rather than eliminate them for excretion.


Asunto(s)
Braquiuros , ATPasas de Translocación de Protón Vacuolares , Animales , Amoníaco/metabolismo , Branquias/metabolismo , Transporte Biológico , Sodio/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Braquiuros/fisiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
15.
Hypertension ; 81(5): 1044-1054, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38465625

RESUMEN

BACKGROUND: Potassium (K+)-deficient diets, typical of modern processed foods, increase blood pressure (BP) and NaCl sensitivity. A K+-dependent signaling pathway in the kidney distal convoluted tubule, coined the K+ switch, that couples extracellular K+ sensing to activation of the thiazide-sensitive NaCl cotransporter (NCC) and NaCl retention has been implicated, but causality has not been established. METHODS: To test the hypothesis that small, physiological changes in plasma K+ (PK+) are translated to BP through the switch pathway, a genetic approach was used to activate the downstream switch kinase, SPAK (SPS1-related proline/alanine-rich kinase), within the distal convoluted tubule. The CA-SPAK (constitutively active SPS1-related proline/alanine-rich kinase mice) were compared with control mice over a 4-day PK+ titration (3.8-5.1 mmol) induced by changes in dietary K+. Arterial BP was monitored using radiotelemetry, and renal function measurements, NCC abundance, phosphorylation, and activity were made. RESULTS: As PK+ decreased in control mice, BP progressively increased and became sensitive to dietary NaCl and hydrochlorothiazide, coincident with increased NCC phosphorylation and urinary sodium retention. By contrast, BP in CA-SPAK mice was elevated, resistant to the PK+ titration, and sensitive to hydrochlorothiazide and salt at all PK+ levels, concomitant with sustained and elevated urinary sodium retention and NCC phosphorylation and activity. Thus, genetically locking the switch on drives NaCl sensitivity and prevents the response of BP to potassium. CONCLUSIONS: Low K+, common in modern ultraprocessed diets, presses the K+-switch pathway to turn on NCC activity, increasing sodium retention, BP, and salt sensitivity.


Asunto(s)
Potasio , Proteínas Serina-Treonina Quinasas , Animales , Ratones , Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Potasio en la Dieta/metabolismo , Presión Sanguínea/fisiología , Cloruro de Sodio/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Transducción de Señal , Fosforilación , Túbulos Renales Distales/metabolismo , Hidroclorotiazida , Sodio/metabolismo , Alanina/metabolismo , Prolina/metabolismo
16.
Kidney360 ; 5(3): 471-480, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38433340

RESUMEN

Pictured, described, and speculated on, for close to 400 years, the function of the rectal gland of elasmobranchs remained unknown. In the late 1950s, Burger discovered that the rectal gland of Squalus acanthias secreted an almost pure solution of sodium chloride, isosmotic with blood, which could be stimulated by volume expansion of the fish. Twenty five years later, Stoff discovered that the secretion of the gland was mediated by adenyl cyclase. Studies since then have shown that vasoactive intestinal peptide (VIP) is the neurotransmitter responsible for activating adenyl cyclase; however, the amount of circulating VIP does not change in response to volume expansion. The humoral factor involved in activating the secretion of the gland is C-type natriuretic peptide, secreted from the heart in response to volume expansion. C-type natriuretic peptide circulates to the gland where it stimulates the release of VIP from nerves within the gland, but it also has a direct effect, independent of VIP. Sodium, potassium, and chloride are required for the gland to secrete, and the secretion of the gland is inhibited by ouabain or furosemide. The current model for the secretion of chloride was developed from this information. Basolateral NaKATPase maintains a low intracellular concentration of sodium, which establishes the large electrochemical gradient for sodium directed into the cell. Sodium moves from the blood into the cell (together with potassium and chloride) down this electrochemical gradient, through a coupled sodium, potassium, and two chloride cotransporter (NKCC1). On activation, chloride moves from the cell into the gland lumen, down its electrical gradient through apical cystic fibrosis transmembrane regulator. The fall in intracellular chloride leads to the phosphorylation and activation of NKCC1 that allows more chloride into the cell. Transepithelial sodium secretion into the lumen is driven by an electrical gradient through a paracellular pathway. The aim of this review was to examine the history of the origin of this model for the transport of chloride and suggest that it is applicable to many epithelia that transport chloride, both in resorptive and secretory directions.


Asunto(s)
Tiburones , Animales , Tiburones/metabolismo , Glándula de Sal/metabolismo , Cloruros/metabolismo , Cloruros/farmacología , Cazón/metabolismo , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/farmacología , Péptido Natriurético Tipo-C/metabolismo , Péptido Natriurético Tipo-C/farmacología , Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Sodio/metabolismo , Sodio/farmacología , Potasio/metabolismo , Potasio/farmacología
17.
FASEB J ; 38(3): e23454, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38315457

RESUMEN

Mitochondria shape intracellular Ca2+ signaling through the concerted activity of Ca2+ uptake via mitochondrial calcium uniporters and efflux by Na+ /Ca2+ exchangers (NCLX). Here, we describe a novel relationship among NCLX, intracellular Ca2+ , and autophagic activity. Conditions that stimulate autophagy in vivo and in vitro, such as caloric restriction and nutrient deprivation, upregulate NCLX expression in hepatic tissue and cells. Conversely, knockdown of NCLX impairs basal and starvation-induced autophagy. Similarly, acute inhibition of NCLX activity by CGP 37157 affects bulk and endoplasmic reticulum autophagy (ER-phagy) without significant impacts on mitophagy. Mechanistically, CGP 37157 inhibited the formation of FIP200 puncta and downstream autophagosome biogenesis. Inhibition of NCLX caused decreased cytosolic Ca2+ levels, and intracellular Ca2+ chelation similarly suppressed autophagy. Furthermore, chelation did not exhibit an additive effect on NCLX inhibition of autophagy, demonstrating that mitochondrial Ca2+ efflux regulates autophagy through the modulation of Ca2+ signaling. Collectively, our results show that the mitochondrial Ca2+ extrusion pathway through NCLX is an important regulatory node linking nutrient restriction and autophagy regulation.


Asunto(s)
Señalización del Calcio , Calcio , Clonazepam/análogos & derivados , Tiazepinas , Señalización del Calcio/fisiología , Calcio/metabolismo , Intercambiador de Sodio-Calcio , Mitocondrias/metabolismo , Autofagia , Sodio/metabolismo
18.
Plant Physiol Biochem ; 207: 108414, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38324954

RESUMEN

The ubiquitin/proteasome system plays a crucial role in the regulation of plant responses to environmental stress. Here, we studied the involvement of the UBC1 and UBQ2 genes encoding a ubiquitin conjugating enzyme (E2) and ubiquitin extension protein, respectively, in the response to salt stress. Our results showed that the constitutive expression of tobacco NtUBC1 and NtUBQ2 in Arabidopsis thaliana improved salt tolerance, along with the lower Na+ level and higher K+/Na+ ratio compared to control plants. Moreover, the expression levels of sodium transporters, including AtHKT1 (High-Affinity K+ Transporter1) and AtSOS1 (Salt Overly Sensitive 1), were higher in NtUBC1- and NtUBQ2-Arabidopsis. However, the transcript level of AtNHX1 (Na+/H+ Exchanger 1) was similar between control and transgenic plants. After salt exposure, the activity of the 26S proteasome markedly increased in NtUBC1- and NtUBQ2-expressing plants; however, ubiquitinated protein levels decreased compared to control plants. Furthermore, higher activity of antioxidant enzymes and lower ROS production were observed in UBC1- and UBQ2-expressing plants. We further challenged atubc1, atubc2, and atubq2 single mutants and atubc1ubc2 double mutant lines with salt stress; interestingly, the salt sensitivity and sodium levels of the studied mutants were enhanced, while the potassium levels were reduced. However, the atubc1ubc2 double mutant illustrated a more severe phenotype than the single mutants, probably due to the redundant function of UBC1 and UBC2 in Arabidopsis. Taken together, NtUBC1 and NtUBQ2 enhance salt tolerance by enhancing 26S proteasome activity and reducing Na+ accumulation, ROS, and ubiquitinated/salt-denatured proteins.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Tolerancia a la Sal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , Tabaco/genética , Sodio/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Regulación de la Expresión Génica de las Plantas
19.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G555-G566, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38349781

RESUMEN

Cystic fibrosis (CF) is a genetic disease caused by the mutations of cystic fibrosis transmembrane conductance regulator (CFTR), the cystic fibrosis transmembrane conductance regulator gene. Cftr is a critical ion channel expressed in the apical membrane of mouse salivary gland striated duct cells. Although Cftr is primarily a Cl- channel, its knockout leads to higher salivary Cl- and Na+ concentrations and lower pH. Mouse experiments show that the activation of Cftr upregulates epithelial Na+ channel (ENaC) protein expression level and Slc26a6 (a 1Cl-:2[Formula: see text] exchanger of the solute carrier family) activity. Experimentally, it is difficult to predict how much the coregulation effects of CFTR contribute to the abnormal Na+, Cl-, and [Formula: see text] concentrations and pH in CF saliva. To address this question, we construct a wild-type mouse salivary gland model and simulate CFTR knockout by altering the expression levels of CFTR, ENaC, and Slc26a6. By reproducing the in vivo and ex vivo final saliva measurements from wild-type and CFTR knockout animals, we obtain computational evidence that ENaC and Slc26a6 activities are downregulated in CFTR knockout in salivary glands.NEW & NOTEWORTHY This paper describes a salivary gland mathematical model simulating the ion exchange between saliva and the salivary gland duct epithelium. The novelty lies in the implementation of CFTR regulating ENaC and Slc26a6 in a CFTR knockout gland. By reproducing the experimental saliva measurements in wild-type and CFTR knockout glands, the model shows that CFTR regulates ENaC and Slc26a6 anion exchanger in salivary glands. The method could be used to understand the various cystic fibrosis phenotypes.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Ratones , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Membrana Celular/metabolismo , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Sodio/metabolismo , Modelos Teóricos , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Antiportadores/genética , Antiportadores/metabolismo
20.
J Integr Plant Biol ; 66(4): 700-708, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38409933

RESUMEN

The high-affinity potassium transporters (HKTs), selectively permeable to either Na+ alone or Na+/K+, play pivotal roles in maintaining plant Na+/K+ homeostasis. Although their involvement in salt tolerance is widely reported, the molecular underpinnings of Oryza sativa HKTs remain elusive. In this study, we elucidate the structures of OsHKT1;1 and OsHKT2;1, representing two distinct classes of rice HKTs. The dimeric assembled OsHKTs can be structurally divided into four domains. At the dimer interface, a half-helix or a loop in the third domain is coordinated by the C-terminal region of the opposite subunit. Additionally, we present the structures of OsHKT1;5 salt-tolerant and salt-sensitive variants, a key quantitative trait locus associated with salt tolerance. The salt-tolerant variant of OsHKT1;5 exhibits enhanced Na+ transport capability and displays a more flexible conformation. These findings shed light on the molecular basis of rice HKTs and provide insights into their role in salt tolerance.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Tolerancia a la Sal/genética , Potasio/metabolismo , Proteínas de Transporte de Membrana , Sodio/metabolismo , Cationes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...